Recent Case Studies in Bearing Fault Detection and Prognosis

Michael Roemer, Carl Byington, Jeremy Sheldon

Impact Technologies, LLC

Rochester, NY • State College, PA • Atlanta, GA

Mike.Roemer@impact-tek.com

585-424-1990

MPA

Outline

- 1. Introduction and Prognosis Architecture
- 2. Incipient Fault Detection System and Algorithms
- 3. Data Collection and Analysis
 - T-63 Engine Test Cell
 - Engine OEM Rig Testing
 - Bearing OEM Test Cell
 - CH-47 Swashplate Bearing
- 4. Conclusions

Bearing Prognostic Architecture

www.impact-tek.com

© Copyright 2006, Impact Technologies, LLC

3

Vibro-Acoustic Monitoring

www.impact-tek.com

© Copyright 2006, Impact Technologies, LLC

Bearing Failure Mechanism Progression

Failure occurs in stages

- Symptoms start at high frequency excitation and move toward lower frequencies as damage progresses
- Coupling high frequency vibration techniques with models can provide best confidence in predictions

Statistical Feature Detection

Detection Theory, Uncertainty and Threshold Settings

T63 Engine Bearing #2 Incipient Fault Testing

www.impact-tek.com

© Copyright 2006, Impact Technologies, LLC

8

Overview

- Tests conducted at Wright-Patterson Air Force Base in June 2005
- Rolls Royce T63 turboshaft helicopter engine test cell
- Two different independent seeded faults: dent and spall on inner race of Bearing #2
- Vibration data collected for fault detection analysis

T63 Turboshaft Engine Test Cell

© Copyright 2006, Impact Technologies, LLC

Test Bearing Conditions

Three Bearing Conditions:

Healthy

• Used but in good condition

Dented

- Two Brinell Hardness Indents on inner race
- Inner raceway wear path

Spalled

- Spall initiated in Minisimulator from a Brinell mark on inner race
- Dimensions 0.3 in x 0.25 in
- ~8 hrs at 12,000 RPM

Engine Operating Conditions

Bearing	Cycle	Total	Operating Hours	Dates	
Condition	Numbers	Cycles	(approximately)		
Healthy	3-4	2	1.1	6/10/05	
Spalled	14-17	4	2.25	6/16/05	
Dented	18-74	66 (Three Runs)	43	6/14/2005; 6/20/05-6/30/05	

Broadband Analysis: False Alarms?

Statistical Feature Extraction (Broadband RMS)

www.impact-tek.com

© Copyright 2006, Impact Technologies, LLC

13

Frequency Feature Extraction (Narrowband IE BPFI)

www.impact-tek.com

© Copyright 2006, Impact Technologies, LLC

Dented Bearing Fault Progression

Narrowband Feature

Significant reduction in False Alarms
 Increase in Mean and Variance of faulted distributions

T-63 Test Observations

- Stress Broadband analysis is a mild (yet inconclusive) indicator of faults
- Preferential bands enable fault identification and progression
- Narrowband features provide good statistical separation of healthy and faulted cases
- Narrowband features compensate for effects of tear down and assembly
- Reduced false alarm and missed detection rates

Engine OEM Bearing Rig Testing: Hybrid Ceramic Bearing Fault Detection

Monitoring System Hardware

www.impact-tek.com

© Copyright 2006, Impact Technologies, LLC

Test Configuration

- Ceramic Hybrid Test Bearing
 - Silicon nitride rolling elements
 - Metallic races
 - Angular contact geometry
 - Rolling Element Seeded Fault
- Speed and Load Profile
 - Stage 1 100% axial load
 - Stage 2
 48% axial load
- Data Acquisition
 - 2 seconds of data every two minutes
 - Over 700 GB of data; over 1100 hrs of testing

100% speed 93% speed

Overview of Damage Progression

*Note: Typical of Accelerometers 1-4

Failure Mode Identification

Statistical Detection Analysis

Statistical Fault Detection Summary

Ceramic Bearing Test Observations

- ✓ Vibration-based ImpactEnergy™ processing provides clear race spall detection with high confidence
 - Corroborated by estimate of ground truth and debris measurements
- Current vibration technology is extensible to hybrid ceramic bearings
- Technology validated and verified with full scale engine bearing rig through successful detection of a both incipient and severe faults

Bearing OEM Test Cell Seeded Fault Detection and Progression

© Copyright 2006, Impact Technologies, LLC

Monitoring System Hardware

Exterior Accelerometer Location G

Exterior Accelerometer Location H

DAQ Hardware

www.impact-tek.com

© Copyright 2006, Impact Technologies, LLC

Test 2: Statistical Detection

Test 5: Statistical Detection

© Copyright 2006, Impact Technologies, LLC

Test 5: Prognosis

[©] Copyright 2006, Impact Technologies, LLC

Test 14 Results Under Speed & Load Cycle

CT

Outer Race Incipient Fault Tests

Statistical Performance Results

TEST NUMBER	SENSOR	FALSE ALARM	INCIPIENT DETECTION	INCIPIENT DETECTION TIME [HRS]	SPALL DETECTION	SPALL DETECTION TIME [HRS]	TOTAL RUNTIME [HRS]
2	Accel: G	2.0%	82.8%	33.4	99.1%	86.7	174.4
3	Accel: H	2.0%	99.3%	46.7	99.7%	93.3	117.1
4	Accel: H	2.0%	97.4%	8.2	100.0%	9.4	10
5	Accel: G	2.0%	66.8%	5.7	97.2%	20	24.8
6	Accel: G	2.0%	96.1%	33.4	100.0%	82	116.5
7	Accel: H	2.0%	90.9%	25	99.7%	84.2	101.6
10	Accel: H	2.0%	95.6%	23.4	100.0%	93.3	101.6
12	Accel: G	2.0%	97.6%	4.2	97.6%	7.9	8.8
14	Accel: G (Exterior)	2.0%	89.2%	16.7	99.0%	166.7	185.6
14	Accel: F (Interior)	2.0%	96.7%	16.7	100.0%	167.8	185.6

 Incipient detection time horizon was about 75% of total run time (on average)

Significant spall detection time horizon was about 25% of total run time (on average)

CH-47 Swashplate Bearing Fault Classification

www.impact-tek.com

© Copyright 2006, Impact Technologies, LLC

33

CH-47 Bearing Case Study

- Case study: Catastrophic failure of CH-47D aft swashplate bearing
 - Class A mishap: Destroyed aircraft—serious safety concerns
 - Motivated an extensive manual inspection of entire 47D/E fleet significant increases to maintenance workload providing only incomplete results

- Proposed solution: On-board monitoring of bearing health
 - Determine health of bearing and presence of faults without manual physical system inspection
 - Promote safety while reducing maintenance requirements

Images: (L) Keller, J., Grabill, P., "Inserted Fault Vibration Monitoring Tests For a CH-47D Aft Swashplate Bearing," American Helicoptor Society 61st Annual Forum, June 1-3, 2005. (R) <u>http://www.chinook-helicopter.com</u>

CH-47D Swashplate Bearing

Test Cell data to demonstrate the feasibility and benefits of bearing health monitoring

- Six inserted (field used) bearings of known condition
 - Two healthy bearings—baseline
 - Four faulted bearings (1 corroded, 1 spalled, 2 cage faults)

 Five operating conditions: ground, hover, and speeds of 80, 100, 140 forward knots

Corrosion

Spalling

Cage "Pop" Fault

Images: Keller, J., Grabill, P., "Inserted Fault Vibration Monitoring Tests For a CH-47D Aft Swashplate Bearing," **American Helicoptor Society 61**st **Annual Forum**, June 1-3, 2005.

© Copyright 2006, Impact Technologies, LLC

ImpactEnergy[™] Feature Extraction

- Statistical Anomaly Features
 - Fault detection capabilities
 - Limited computational overhead
 - Sensitive to higher levels of fault
 - Calculated for: broadband, narrowband and demod signal
- Frequency domain bearing and shaft features
 - Fault detection & isolation capabilities
 - Signal processing & filtering to eliminate noise
 - Incipient fault sensitivity
- Large set of potential condition indicators

Separation and Clustering

Principle Component Analysis (PCA)

- Reduction of high dimension data using linear algebra: n features to p principle components
- Identify directions of highest variance in the data and project data on those vectors
- Dimension of data is reduced with a minimum of lost information

PCA Process

Calculate covariance matrix of data, C

$$\operatorname{cov}(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{(n-1)}$$

- Solve eigenvalue problem for matrix C
- Determine the p largest eigenvalues project data on coresponding eignvectors

$$F_{pca} = F_{raw} \cdot v$$

Single Level PCA Attempt

PCA performed on entire data set

- Several classes with no clear separation
- Some classes cluster for a few of the load conditions

A classifier is required that will separate all fault classes while remaining invariant to load condition

Modified Hierarchical Approach

Hierarchal PCA

It is possible to identify feature groups targeted at specific classes

Iterative application of PCA can identify feature groups that separate specific faults for all load IMPACT. conditions

www.impact-tek.com

Separable Classes Resulting

Hierarchal PCA - Layers of classification

- First level: most separable classes corroded (S3), spalled (S5)
- Remove classified faults from analysis
- Second level: refined classifier for cage faults cage pop (S4), cage overlap (S6) from healthy specimens (S1) & (S2)
 Level 1 Classifier
 Level 2 Classifier

Case Studies Conclusions

- Successful incipient fault detection and incipient fault-to-failure trending on a variety of test platforms
- In general, all vibration features susceptible to load and speed variations
 - Adds "noise" to statistical based analysis
 - Effect is mitigated somewhat by preferential band selection
 - Normalization and fusion can also aid in reduced noise but care must be taken
- Overall, demodulated features react better to incipient faults and reduce false alarms
- More sophisticated classification schemes may be required to:
 - Differentiate failure modes
 - Reduce flight load sensitivity

IMPAC'